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ABSTRACT

Powerful deep learning methods based on Transformers are used to model diverse
data modalities such as sequences, images, and graphs. These methods typically
use off-the-shelf modules like self-attention, which are domain-agnostic and treat
data as an unordered set of elements. To improve performance, researchers employ
inductive biases—such as position embeddings in sequences and images, and
random walks in graphs—to inject the domain structure, or topology into the model.
However, these inductive biases are carefully engineered heuristics that must be
designed for each modality, requiring significant research effort. In this work, we
propose Chimera, a unified framework that mathematically generalizes state space
models to incorporate the topological structure of data in a principled way. We
demonstrate that our method achieves state-of-the-art performance across domains
including language, vision, and graphs. Chimera outperforms BERT on the GLUE
benchmark by 0.7 points, surpasses ViT by 2.6% on ImageNet-1k classification
accuracy, and outperforms all baselines on the Long Range Graph Benchmark
with a 12% improvement on PascalVOC. This validates Chimera’s methodological
improvement which allows it to directly capture the underlying topology, providing
a strong inductive bias across modalities. Furthermore, being topologically aware
enables our method to achieve a linear time complexity for sequences and images,
in contrast to the quadratic complexity of attention.

1 INTRODUCTION

Real-world data is heterogeneous, ranging from sequential language data to high-dimensional image
data, and structured data of proteins and molecules. Despite this heterogeneity, many domains
exhibit an inherent topology that encodes the neighborhood of each element (node) of the data. For
instance, language and audio have a directed line graph topology, where each node (token) is arranged
sequentially (Fig 1a). Similarly, images possess an undirected grid-graph topology, where each node
(image patch) is connected to its immediate local neighbors in a grid (Fig 1b). Structured data like
proteins have predefined nodes (atoms) and edges (bonds), which constitute their topology (Fig 1c).

Typical approaches to model data build upon Transformers (Vaswani et al., 2017) with self-attention
at their core (Devlin et al., 2019; Dosovitskiy et al., 2021; Rampášek et al., 2022). However, since
self-attention is permutation invariant, it treats data as an unordered set of elements and completely
disregards the data’s topology. To address this, significant research effort has focused on developing
domain-specific heuristics, such as position embeddings (Su et al., 2023; Devlin et al., 2019), and
random walks (Behrouz and Hashemi, 2024; Wang et al., 2024), to serve as the inductive bias for the
underlying topology. However, developing these heuristics requires navigating a large search space for
each domain. For instance, RoPE embeddings (Su et al., 2023) work well in language (Touvron et al.,
2023); in vision, absolute position embeddings are widely used (Dosovitskiy et al., 2021; Heo et al.,
2024); while laplacian embeddings are used in graphs (Rampášek et al., 2022). Moreover, given the
lack of systematic underpinnings, it is unclear how effectively they capture the underlying topology.

In this paper, we consider the following problem: “Can we develop a principled method that captures
the underlying data topology, and achieves state-of-the-art performance across domains?”. We propose
Chimera, a domain-agnostic framework built on recent State Space Models (SSMs)—Mamba-2 (Dao
and Gu, 2024a), RetNet (Sun et al., 2023), Linear Attention (LA) (Katharopoulos et al., 2020)—that
mathematically generalizes SSMs to any topology and achieves state-of-the-art performance across
diverse domains including language, images, and graphs. These consistently superior results validate
Chimera’s methodological improvement which allows it to directly capture the underlying topology,
providing a strong inductive bias across various modalities. This contrasts with existing approaches
that instead apply attention or SSMs as a black box to “flattened data”, supplemented by heuristics.
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(a) Language (Line Graph) (b) Images (Grid Graph) (c) Molecules (General Graph)

Figure 1: Real-world data exhibits inherent topology: (a) language follows a directed line graph, (b)
images a grid graph, and (c) structured data like molecules have explicit graph topology.

Furthermore, being topologically aware allows Chimera to leverage the simpler topology of line and
grid graphs to avoid “unnecessary computation”, thus reducing its computational cost to linear in the
number of nodes. This recovers the linear complexity of SSMs while maintaining strong performance.

To derive Chimera, we consider SSMs for causal language modeling and formally show that SSMs
inherently capture the underlying directed line graph topology through their recurrence structure
(Sec 3.2). For this, we leverage the Structured Masked Attention (SMA) representation (Dao and Gu,
2024a): Multiple methods including Mamba-2, RetNet, LA are SSMs, and these SSMs are equivalent
to the matrix M=L⊙(QKT ) acting on the input, where Q and K are the query and key matrices
respectively, and L is a (data dependent) mask matrix. This mask matrix L is analogous to the causal
masked attention matrix used in Transformers. We show that for SSMs, the mask matrixL can be repre-
sented as the resolvent of the adjacency matrix, A, of a directed line graph, i.e., L=(I−A)−1=

∑
Ai,

where I is the identity matrix. Thus, L characterizes a specific SSM model and is also equivalent to
the resolvent of the adjacency matrix, connecting SSMs and the underlying topology.

We extend this result to generalize SSMs to any topology. Specifically, we appropriately parameterize
the adjacency matrix A, and compute the SMA matrix M = L⊙ (QKT ), where L = (I−A)−1.
Intuitively, Aij captures the influence between neighbor i and j, and the resolvent then accumulates
the influence between each pair of nodes through all possible paths between them, thus capturing the
underlying topology. We present a detailed scheme to parameterize A and introduce a normalization
scheme for A, which is crucial for the stable training of our method.

Central to Chimera is the computation of the mask matrix whose naive implementation incurs cubic
cost. To avoid this, Chimera leverages structure in the topology to significantly speed up this calculation.
Specifically, for the class of directed acyclic graphs (DAGs), the resolvent operation can be computed
in linear time. This is especially useful for topologies like undirected line graphs and grid graphs, which
can be canonically decomposed into multiple DAGs: An undirected line graph decomposes into two
directed line graphs (Fig 4), while a grid graph divides into four directed grid graphs (Fig 5). This allows
us to implement Chimera in linear time—recovering the complexity of SSMs —while preserving
the underlying topology. We further show that for general graphs, we can efficiently compute the
finite sum approximation of the resolvent, capturing the global topological structure while achieving
performance competitive with state-of-the-art baselines. Overall, we make the following contributions:

• We propose Chimera, a unified framework that generalizes SSMs to any data topology.
• We introduce a technique that leverages the underlying data topology using DAGs to improve the

efficiency of Chimera, achieving linear time complexity for sequences and images.
• We validate that Chimera consistently achieves state-of-the-art results across diverse domains

including language, images, and graphs: It outperforms BERT (Devlin et al., 2019) by a GLUE
score (Wang et al., 2019) of 0.7, surpasses ViT (Dosovitskiy et al., 2021) on ImageNet-1k (Deng
et al., 2009) classification by 2.6%, and outperforms strong baselines on the Long Range Graph
Benchmark (LRGB) (Dwivedi et al., 2022), notably increasing PascalVOC’s F1 score by 12% .

2 PRELIMINARIES

In this section, we introduce State Space Models (SSMs), which are recurrent models designed to
process sequential data, such as language and audio. We first formulate SSMs in their recurrent form
and then introduce the Structured Masked Attention (SMA) (Dao and Gu, 2024a) representation that
interprets this recurrence as a matrix M acting on the input X. In the subsequent section, we use the
SMA representation to show that SSMs inherently operate on a directed line graph topology.
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2.1 OVERVIEW OF STATE SPACE MODELS

SSMs, such as Mamba-2 (Dao and Gu, 2024a), Linear Attention (LA) (Katharopoulos et al., 2020),
RetNet (Sun et al., 2023), are recurrent sequence-to-sequence models that feature a linear hidden-state
transition function. This linearity enables a hardware-efficient, vectorized implementation of SSMs,
allowing them to scale effectively. Furthermore, this transition function is typically data-dependent
which is known to improve model performance (Hwang et al., 2024).

Formally, let X ∈RT×D denote the input sequence of T tokens, where each token has D channels.
Let the size of the hidden state be d. Let Y ∈RT×D be the output of the sequence-to-sequence model.
Then, SSMs begin by computing the following matrices:

B=fB(X)∈RT×d, C=fC(X)∈RT×d, V =fV (X)∈RT×d, (1)
where fB , fC , fV are model specific data dependent functions. For instance, in Mamba-2 each of
these functions is a composition of a linear projection of X along the channel dimension, followed by a
short convolution layer along the sequence dimension and a Swish activation function (Ramachandran
et al., 2017). In Dao and Gu (2024a), it was shown that we can view the B, C, and V matrices as
analogs of the key, query, and value matrices in self-attention.

Let vi ∈RT denote the input corresponding to channel i (i.e., vi = V [:,i]). For any time t, define
Bt=B[t,:], Ct=C[t,:], yit=Y [t,i] and vit=vi[t]. Then, the model computes a recurrence, which
is a function from B,C,∆,V to the output Y , starting with the hidden state hi

−1=0∈Rd as,

hi
t=ath

i
t−1+btBtv

i
t, (2)

yit=CT
t h

i
t, (3)

where at,bt are model-specific parameters that characterize the SSM. For instance, Linear Attention
sets at=bt=1, RetNet chooses at=γ, bt=1 for some learnable parameter γ. In contrast, Mamba-2
sets at,bt in a data-dependent manner to implicitly encode a gated memory mechanism known as
selectivity or the selection mechanism. This mechanism allows the model to select and propagate
important tokens across long sequences. Specifically, define,

∆=f∆(X)∈RT , at=exp(−∆t)∈R, bt=∆t∈R, (4)
where ∆ is the selectivity matrix, and f∆ like fB , fC , fV is a data-dependent function. The selection
mechanism operates as follows: for an important token, ∆t is large, and the model gives more weight
to token t while reducing the contribution of the previous hidden state. Conversely, for an unimportant
token, ∆t is small and the model retains most of the past hidden state, with minimal contribution from
token t. This allows Mamba-2 to retain important tokens through long recurrences.

2.2 SSM IN THE STRUCTURED MASKED ATTENTION REPRESENTATION

In Dao and Gu (2024a), the authors introduced the Structured Masked Attention (SMA) representation,
which computes the same function as the SSM recurrence (Eq. 3) described in the previous section
but instead interprets the function computation as a matrix M acting on the value matrix V .1 They
demonstrate that such an M is a function of B,C,∆ matrices (defined above) and can be expressed
as M=L◦CBT , where L is a data-dependent mask matrix derived from the ∆ matrix.

Formally, define B̄t=btBt, and recall from Section 2.1 that bt=∆t, at=exp(−∆t) for Mamba-2;
bt =1, at = γ for RetNet; and bt =1, at =1 for Linear Attention. Then the output Y computed by
the recurrence (Eq. 3) can be vectorized as,

Y =MV =(L⊙CB̄T )V , (5)
where the structured mask matrix Lij=1[i≥j]Πj<k≤iak, for all i,j,

L=


1 0 0 ··· 0
a1 1 0 ··· 0
a1a2 a2 1 ··· 0

...
...

...
. . .

...
a1a2···aT−1 a2a3···aT−1 a3a4···aT−1 ··· 1

. (6)

The SMA representation is useful because, as we will demonstrate in Section 3, it neatly isolates the
effect of the underlying topology within the recurrence computation into the mask matrix L. This
property allows us to generalize SSMs to arbitrary topologies by appropriately formulating the maskL.

1Note that not all SSMs have an SMA representation, but you focus throughout this paper on ones that do (LA,
RetNet, Mamba-2) and use we will use “SSMs” to refer specifically to this restricted class.
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Figure 2: SSMs inherently operate on a directed line graph: SSMs modeling a sequence of tokens (left),
the structured mask matrix (center), Chimera on a directed line graph (right)

3 CHIMERA: BUILDING MODELS FOR ANY TOPOLOGY

In this section, we introduce Chimera, a unified framework that generalizes SSMs to any arbitrary
topology, enabling the development of performant models across diverse domains. Existing approaches
such as Behrouz and Hashemi (2024); Devlin et al. (2019); Liu et al. (2021), treat attention and SSMs
as black-box modules operating on fixed topologies such as sets or sequences and rely on heuristics
to incorporate structural information. In contrast Chimera opens up this black box and mathematically
adapts it to handle any topology.

To motivate Chimera, we first analyze the setting of SSMs applied to the causal language modeling
task. We show that the recurrence in SSMs naturally operates on a directed line graph topology. To
formalize this result, we first define the resolvent of a linear operator and interpret its action when
this operator is a weighted adjacency matrix of a topology.

3.1 RESOLVENT OF AN ADJACENCY MATRIX ACCUMULATES INFLUENCE

A graph topology consists of a set of nodes V that represent data elements, and edges E that encode
the underlying topological structure. We conceptualize the associated adjacency matrix A∈R|V|×|V|

as capturing the influence between neighboring nodes. Specifically, Aij is the influence that node
j has on node i, for each edge (i,j). The natural desideratum then is to extend the notion of influence
to all node pairs by incorporating the graph’s structure, accounting for all possible paths between them.
To model this cumulative influence, we introduce the concept of the resolvent of a linear operator
Definition 3.1 (Resolvent of a Linear Operator (Reed and Simon, 1980)). Let A∈RT×T be a linear
operator, I the identity operator, and λ a complex number. Then, the resolvent operator is defined as:

R(λ,A)=(λI−A)−1, (7)
which exists for all complex numbers λ that are not in the spectrum of A, i.e., λ /∈σ(A). In this work,
we set λ=1 to remain in the field of real numbers, and this is done without loss of generality, as any
choice of λ is equivalent upto scaling of the model.

We now demonstrate how the resolvent operator captures the influence between any two nodes in the
graph. Observe that the resolvent operation can be expanded using the Liouville-Neumann series if
the operator norm of the adjacency matrix, ∥A∥, is less than 1,

R(1,A)=(I−A)−1=
∞∑
k=0

Ak. (8)

Intuitively, each term Ak in this expansion represents the influence between any two nodes i and j
through all paths of length exactly k connecting them. This is formalized in Proposition 3.2.
Proposition 3.2 (Ak accumulate influence through paths of length k). Given the weighted adjacency
matrix A∈RT×T of a graph G=(V,E) with |V|=T , the (i,j)th entry of Ak is:

(Ak)ij=
∑

p1,p2,...,pk−1

Aip1
Ap1p2

···Apk−1j ,

where (p1,...,pk−1) is an ordered sequence of vertices forming a path of length k from node i to j.

Therefore, the series (I−A)−1 (Eq. 8) sums up the influence of node i on node j over all possible
paths and path lengths. Additionally, we also note that Eq. 8 provides a sufficient condition for the
existence of the resolvent: the series converges when the operator norm of A is less than one.

3.2 SSMS OPERATE ON A DIRECTED LINE GRAPH

We now show that SSMs naturally operate on a directed line graph. Specifically, let V be the set of
tokens, and E be the edges connecting token t to the next token t+1. The weighted adjacency matrix
is defined as As,t=1[t=s+1]at, where at is the method-specific parameter described in Section 2.2.
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We recall from Section 2.2 that SSMs can be represented as the SMA matrix M=L⊙(CBT ). We
make the key observation that L is precisely the resolvent of A, that is L=(I−A)−1. This ties SSMs
to the directed line graph topology, with the mask matrix encoding the topology (Fig 2).

Proposition 3.3. Under the notation established in Section 2, consider a weighted directed
graph G with nodes V = {0, ··· ,T − 1}, edges E = {(i− 1,i)|i ∈ V,i > 0}, and the edge weights
W={wi−1→i=ai|i∈V,i>0}. Let A be the weighted adjacency matrix of incoming edges,

A=


0 0 0 ··· 0
a1 0 0 ··· 0
0 a2 0 ··· 0
...

...
...

. . .
...

0···0 0···0 0 aT−1 0

, (9)

then L=
∑∞

i=0A
i=(I−A)−1, and consequently, y=((I−A)−1⊙CB̄T )V .

We can interpret this result intuitively: in a directed line graph, there is exactly one path between tokens
i,j with i<j, and the corresponding entry in L, Lij =

∏
i≥k>jak, reflects the cumulative influence

of the intervening tokens along this path. Furthermore, Lij = 0 for i < j restricts influence in the
forward direction, ensuring that the model remains causal. This shows that SSMs inherently operate
on a directed line graph with the L matrix encoding the topology.

3.3 GENERALIZING SSMS TO ARBITRARY TOPOLOGIES

We now build on Proposition 3.3 to generalize SSMs to arbitrary topologies. Specifically, we compute
the resolvent of an “appropriately parameterized” adjacency matrix, A, and model the output in the
SMA representation as ((I−A)−1⊙(CB̄T ))V . In this section, we focus on the parameterization
of A for arbitrary topologies and ensuring the numerical stability of the method, particularly in cases
of non-invertibility or poor conditioning of I−A.

Formally, consider a graph G=(V,E) with |V|=T nodes, where each node has D channels. Let d
denote the generalized hidden state size. For each node, we compute the following matrices,

B=fB(X)∈RT×d, C=fC(X)∈RT×d, V =fV (X)∈RT×d, ∆=f∆(X)∈RT , (10)

where the functions fB , fC , fV (X), f∆ are linear projections applied to the input, followed by
a local graph convolution over neighboring nodes and a Swish activation as chosen in Mamba-2.
Our parameterization is inspired by Mamba-2 (Dao and Gu, 2024a)—one of the latest iterations
of SSMs—as it features selectivity, which allows it to effectively model long-range dependencies.
However, we note that our approach can generalize any SSM with an SMA representation.

We parameterize the A matrix for each edge (i,j)∈E as,

Aij=
exp(−∆i)+exp(−∆j)

2
, (11)

to incorporate context from both ends of the edge (i,j). To add directionality to the edge representation
and to further increase the representational power of our model, we can also maintain two (different)
∆’s such that Aij=(exp(−∆

(1)
i )+exp(−∆

(2)
j ))/2).

Note that the matrix I−A may be either non-invertible or poorly conditioned, which could hinder the
stable training of the model. To address this, we introduce a data-dependent normalization parameter
Ψ=fΨ(X)∈RT , computed similarly to ∆, and perform a row-wise normalization of the adjacency
matrix using Ψ. Specifically, for each row i∈ [T ], we apply:

A[i,:]=
γA[i,:]

1TA[i,:]+exp(−Ψi)
,

where γ is a scaling hyperparameter. In the following proposition, we show that this normalization
guarantees the convergence of the Neumann series for the adjacency matrix A.

Proposition 3.4. Under Gaussian initialization, the row-wise normalization strategy ensures that
∥A∥<1 and ∥(I−A)−1∥ is bounded with probability greater than 1−Φ(−1

γ ).

We provide the proof for this proposition in Appendix A.1. Finally, we compute the resolvent matrix
L=(I−A)−1 and the output y as (L⊙CB̄T )V .
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4 CHIMERA WITH IMPROVED EFFICIENCY

While Chimera works with arbitrary graph topologies, directly computing the resolvent incurs a cubic
cost in the number of nodes. However, we show that we can significantly reduce this computational
cost when the underlying topology is more structured. Specifically, we consider the class of directed
acyclic graphs (DAGs), a generalization of directed line graphs, and show that the resolvent can be
computed in linear time, matching the complexity of SSMs like Mamba-2.

4.1 CHIMERA ON DAGS

We tailor Chimera to DAGs with a specialized normalization scheme and an algorithm to compute the
output in linear time. Our choice of DAGs is motivated by the fact that topologies such as undirected
line and grid graphs can be canonically decomposed into DAGs: a line graph divides into two directed
line graphs (Fig 4) and a grid graph divides into four directed grid graphs (Fig 5). This decomposition
enables Chimera to operate efficiently with a linear complexity while preserving topology.

Formally, consider a DAG G=(V,E) with |V|=T nodes, each with D channels and a hidden state
size of d. For any node i, let p(i) be the set of its parents. Let B,C,V ,∆ be the input projections as
defined in Section 3. We define the adjacency matrix A as Aij=exp(−∆i[j]) for each (i,j)∈E , and
set B̄i=∆iBi for each node i. We first show that the resolvent (I−A)−1 exists.

Proposition 4.1. For a DAG, A is nilpotent, that is AT =0. Therefore, the inverse (I−A)−1 exists
and is given by the finite sum:

L=(I−A)−1=

T−1∑
t=0

At. (12)

Figure 3: Recurrence on DAGs

As in previous sections, we compute the output of the model
as y = (L⊙ (CB̄T ))V . Furthermore, this method admits an
equivalent recurrent view (Prop. 4.2).
Proposition 4.2. Our method computes the following recurrence
on each channel v of V :

hi=
∑

j∈p(i)

Aijhj−B̄ivi, yi=CT
i hi, (13)

where hl=0 for all leaf nodes l.

Observe that while the resolvent always exists, its entries can be-
come exceedingly large which can cause numerical instabilities.
Recall from Section 3.1 that each Lij represents the cumulative sum of all paths from node j to i, and
in the worst case, the number of such paths grows exponentially with distance. To address this, we
introduce a normalization scheme that is built directly into the recurrence:
Proposition 4.3. The normalized method computes the following recurrence:

hi=
1√
|p(i)|

∑
j∈p(i)

(Aijhj−ln(Aij)Bivi), (14)

yi=CT
i hi. (15)

This normalization ensures that Var(CT
i hi)≤1 under the assumption that the vectors {Bivi,Ci}i are

i.i.d. Gaussians, that is Bivi,Ci∼N (0,Id).

The proof follows by induction on the time step t, where at each time step, we ensure that the output
variance is bounded by 1, Var(CT

i hi)≤1, which guarantees that the output remains a well-behaved
random variable. We provide the detailed proof in Appendix A.2. To incorporate this normalization in
the SMA representation, we define,

Ā= 1√
|p(i)|

A, B̄=
ln(Aij)√

|p(i)|
B, L=(I−Ā)−1, (16)

and compute the output y=(L⊙(CB̄T ))V .

Figure 4: The undirected line graph structure (Left). The canonical DAG decomposition (Right)
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4.1.1 CHIMERA IS EFFICIENT ON DAGS

Finally, we highlight that DAGs are a particularly important case of Chimera because of additional
efficiency benefits, both theoretically and through optimized implementations.

Linear-time Complexity The intuition for the linear complexity is that the resolvent operation for
DAGs is finite because of the lack of cycles. From the adjacency matrix perspective, A is nilpotent, i.e.
Ak=0, where k is the diameter of the graph (Prop 4.1). Since Chimera can be equivalently viewed as
a recurrence on the DAG, the resolvent operation converges after one pass through the graph in the
topological order which takes linear time.
Proposition 4.4. The Chimera structured mask matrix L can be computed in O(|V+|E|) complexity
where |V|,|E| is the number of vertices and edges of the graph, respectively.

The proof is provided in Appendix A.3. We note that the linear-time complexity of Mamba can be
seen as a special case of Theorem 4.4 specialized to the directed line graph, where both |V| and |E| is
equal to the sequence length.

Improving Efficiency Through Matrix Multiplications Finally, we note that on modern hardware
accelerators such as GPUs and TPUs, various computational algorithms can have different efficiency
tradeoffs. For example, on directed line graphs, the naive computation of SSMs and RNNs as a
recurrence is not parallelizable and is inefficient in practice (Gu and Dao, 2023). In the case of DAGs,
we present a technique to reduce both the forward and backward pass for Chimera to leverage only
matrix multiplications which are heavily optimized on modern accelerators.
Theorem 4.5. In case of Chimera on DAGs, the forward pass can be computed with O(log(dia(G)))
matrix multiplications where dia(G) is the diameter of the graph (i.e. length of the longest path), and
the backward pass can be computed with O(1) matrix multiplications.

Backward pass. The local update rule of backpropagation requires applying the chain rule through
the matrix inverse operation, in particular, using the following identity applied to Y =(I−A),

∂Y −1

∂θ
=−Y −1 ∂Y

∂θ
Y −1 (17)

Because Y −1 is already computed in the forward pass, it can be cached, and then the marginal cost of
the local backpropagation is simply two extra matrix multiplications.

Forward pass. To compute L=(I−A)−1 more efficiently for DAGs, we leverage the equivalence
of Neumann series to the series L=I+A+A2+···, which comes to a finite sum for DAGs due to the
nilpotence of A matrix. We compute this sum more efficiently using the “squaring trick” as,

(I−A)−1=(I+A)(I+A2)(I+A4)···(I+Ak), (18)
where k is the smallest power of 2 larger than the graph diameter dia(G). This can be computed using
O(log(dia(G))) matrix multiplications to compute the powers of A for powers-of-two exponents, and
then O(log(dia(G))) matrix multiplications to multiply together the right-hand side.

4.1.2 APPROXIMATE CHIMERA FOR GENERAL TOPOLOGY

While DAGs allow for efficient computation in structured domains like images and language, directly
computing the resolvent L for general graph topology remains computationally expensive. To address
this, we use a finite-sum relaxation of the resolvent operator and truncate its corresponding Neumann
series sum (Eq. 8) at some maximum power k∈N>0. Specifically, let A be the adjacency matrix of
the graph topology defined in Section 3.3, then,

L=

∞∑
i=0

Ai≈L̂=

k∑
i=0

Ai. (19)

Figure 5: Grid graph (left). The canonical 2D-DAG decomposition of the grid graph (right). These
graphs are sufficient to capture the influence between all pairs of nodes in the undirected grid graph.
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We choose k=diam(G), the diameter of the graph, to ensure that L̂ has access to the global structure of
the graph, that is, it includes contributions from every edge and node in the graph.
Proposition 4.6. If k≥dia(G), then for any pair of nodes (i,j), if Lij>0 in the original method, then
L̂ij>0 in the finite-sum relaxation.

As in Section 4.1.1, we can compute this approximation efficiently using the squaring trick:
L̂=(I+A)(I+A2)(I+A4)···(I+Ap), (20)

where p is the smallest power of 2 larger than or equal to the graph diameter dia(G). This reduces the
computational cost of the method to O(log(dia(G))) matrix multiplications.

5 EXPERIMENTS

In this section, we will demonstrate that directly incorporating topology is a powerful inductive bias
for diverse domains such as language, images and graphs, eliminating the need for domain-specific
heuristics. Chimera consistently achieves state-of-the-art performance in these domains. On language,
it outperforms BERT on the GLUE benchmark (Wang, 2018) by a GLUE score of 0.7. On images, it
surpasses ViT models on the ImageNet-1k classification (Deng et al., 2009) task by 2.6%. On general
graphs, Chimera outperforms strong baselines on the Long Range Graph Benchmark (Dwivedi et al.,
2021) which highlights our method’s ability to model long range interactions on graphs. Notably, our
method improves upon PascalVOC dataset’s F1 score by over 12%.

5.1 MASKED LANGUAGE MODELING

We evaluate Chimera on bidirectional language modeling, which has a line graph topology (Fig. 4).
We test two Chimera variants: the general method2 (Sec. 3) applied to an undirected line graph, and the
DAG method (Sec. 4.1), applied to the canonical DAG decomposition of undirected line graphs into
two directed line graphs and summing the resolvents of both DAGs (Fig. 4). Both methods are trained
on the Masked Language Modeling (MLM) (Devlin et al., 2019) task on the C4 dataset (Raffel et al.,
2020) for 70k steps, following the recipe used in M2 (Fu et al., 2023). The models are then fine-tuned
on the GLUE benchmark. We refer the reader to Appendix C for details.
Table 1: Comparing Chimera on the undirected line graph (UG), and on DAG decomposed directed line
graphs (DAG) with other state-of-the-art models including M2 (Fu et al., 2023), MLP-Mixer (Tolstikhin
et al., 2021), FNet (Lee-Thorp et al., 2022), BERT (Devlin et al., 2019) on GLUE benchmark

Method #Params Pretrain GLUE Tasks GLUE
AvgLce Acc (%) MNLI QNLI QQP RTE SST2 MRPC COLA STS

BERT-Base 110M 1.59 67.3 84.1 89.8 91.2 77.2 91.2 87.5 54.6 88.9 83.2
MLP-Mixer 112M 1.77 63.5 77.2 82.4 87.6 67.3 90.5 86.5 43.0 85.2 77.5
FNet 112M 1.94 61.3 74.9 82.1 85.7 63.6 87.6 86.4 42.7 83.1 75.8
M2 116M 1.65 65.9 80.5 86.0 87.0 69.3 92.3 89.2 56.0 86.9 80.9
Chimera (UG) 110M 1.49 68.5 83.63 88.98 89.32 73 93.67 89.4 56.95 88.82 82.97
Chimera (DAG) 110M 1.46 68.9 84.11 89.78 89.77 77.98 93.69 90.36 57.08 88.68 83.93

From Table 1, observe that while BERT outperforms other linear baselines such as M2, MLP-Mixer,
FNet it does so with an additional quadratic cost. In contrast, Chimera achieves the best of both worlds,
incurring a linear time complexity while achieving state-of-the-art performance. This capability arises
from two key factors: first, our parameterization of the adjacency matrix allows the model to effectively
modulate the influence between tokens in the sequence, leading to strong performance. Second, the
structured nature of the adjacency matrix enables a fast, linear-time resolvent operation, improving the
method’s computational efficiency. Additionally, note that our undirected graph (UG) variant performs
competitively with BERT while surpassing other recent baselines with a linear time complexity.

5.2 IMAGENET-1K CLASSIFICATION

We evaluate Chimera on the ImageNet-1k (Deng et al., 2009) classification task that has a grid graph
topology. We compare Chimera applied to the 2D-DAG decomposition (Figure 5) topology against
state-of-the-art ViT based models, specifically we use ViT-B which has 88M parameters. We also
compare against other latest linear time baselines like Hyena (Poli et al., 2023), S4 (Gu et al., 2022)

2We use a slightly modified normalization scheme for the undirected line graph method to allow for larger
selectivity values in the adjacency matrix. See Appendix B.1 for details
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in Table 2. We note that all these baselines flatten the image into a 1D sequence and apply 1D sequence
models, and do not take into account the underlying topology. For our experiments, we simply replace
the SSD layer in the Mamba block introduced in Dao and Gu (2024a) with Chimera, and use the ViT-B
training recipe with no additional hyperparameter tuning.

Table 2: Top-1, Top-5 accuracies of various meth-
ods on ImageNet-1K.

Method (88M) Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

ViT-B 78.8 80.6 94.2 95.2
S4-ViT-B 79.4 80.4 94.2 95.1
Hyena-ViT-B 78.4 76.4 94.0 93.0
Chimera-ViT-B 81.4 82.1 95.4 95.9

Table 3: Ablation: Comparing 2D grid structure
with 1D flattening of patches.

Method (22M) Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

Fwd (1D) 73.8 73.8 91.6 91.6
Fwd & Rev (1D) 76.5 75.6 93.4 92.8
2D DAG 77.8 76.7 93.9 93.5

Table 2 shows that Chimera’s 2D-DAG decomposition outperforms ViT by 2.6%. We note that our
method does not require any additional position embeddings which are still an active area of research
for ViT (Heo et al., 2024). Furthermore, we outperform methods such as Hyena (Poli et al., 2023) by
3%, and S4 (Gu et al., 2022) by 2% that linearize the data and then apply an SSM on it.

To demonstrate the importance of incorporating topology, we perform an ablation where we progres-
sively degrade the grid-graph structure, observing a monotonic drop in performance. We consider three
topologies: 2D DAG is the 2D DAG decomposition that retains the grid structure (Fig 5, right); Fwd &
Rev (1D) flattens the grid into a 1D sequence with bidirectional edges like ViT (Fig 6, top); Fwd (1D)
is a 1D graph with only forward edges (Fig 6, bottom). We observe from Table 3 that as the topology is
lost, the accuracy drops from 77.8% (2D-DAG) to 76.5% (Fwd & Rev) to 73.8% (Fwd).

5.3 LONG RANGE GRAPH BENCHMARK

We evaluate Chimera on the Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022). This bench-
mark comprises tasks designed to challenge models in their ability to effectively capture both local and
long-range interactions within graph structures. We compare against convolution-based (GCN Kipf and
Welling (2016), GatedGCN Bresson and Laurent (2017)), Transformer-based (GraphGPS Rampášek
et al. (2022)) , Mamba-based (Graph-Mamba Wang et al. (2024), Graph Mamba Behrouz and Hashemi
(2024)), and other baselines like GINE Hu et al. (2019), as well as their hyperparameter tuned versions
introduced in Tönshoff et al. (2023). These baselines incorporate topology using a variety of techniques:
convolution ones use local aggregation, transformer ones use local and global aggregation via position
embeddings, and Mamba ones use “data flattening” along with random walks, position embeddings,
and local encodings. The diversity of these methods highlights the significant research effort dedicated
to heuristics to incorporate topology, in contrast to our unified approach.

We show that Chimera achieves state-of-the-art results across all LRGB tasks (Table 4). Notably, we
observe that on tasks such as Peptides-Func and Peptides-Struct, where convolution-based models
typically outperform transformers, Chimera outperforms or matches their performance. Furthermore,
on tasks like PascalVOC and COCO where transformers do well, Chimera consistently surpasses all
baselines, with a more than 12% improvement on PascalVOC. This validates our grounded approach
which effectively captures both local and global information.

In Table 5, we evaluate the approximate variant of Chimera with a finite-sum relaxation (Sec 4.1.2)
that truncates the Neumann series at the average graph diameter of the graph. We show that the
approximation variant matches the strong transformer baseline of GraphGPS, however fully leveraging
the entire graph structure in Chimera provides clear performance benefits.

Figure 6: Progressively destroying the 2D grid graph topology. Fwd & Rev (top): 1D flattened grid
with bidirectional edges. Fwd (bottom): 1D flattened grid graph with only forward edges.
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Table 4: Evaluation of Chimera on LRGB Tasks (9). The first section shows the best performing
numbers cited in the papers that introduce the given baselines. The second section shows the result
of better hyperparameter tuned baselines introduced by Tönshoff et al. (30). Finally, we also compare
with other baselines that use SSMs as a blackbox replacement for a Transformer.

Method (< 500k params) Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)
GCN (17) 0.5930±0.0023 0.3496±0.0013 0.1268±0.0060 0.0841±0.0010
GINE (14) 0.5498±0.0079 0.3547±0.0045 0.1265±0.0076 0.1339±0.0044
Gated-GCN (2) 0.5864±0.0077 0.3420±0.0013 0.2873±0.0219 0.2641±0.0045
SAN+LapPE (18) 0.6384±0.0121 0.2683±0.0043 0.3230±0.0039 0.2592±0.0158
Exphormer (26) 0.6527±0.0043 0.2481±0.0007 0.3975±0.0037 0.3430±0.0108
GPS+BigBird (24) 0.5854±0.0079 0.2842±0.0130 0.2762±0.0069 0.2622±0.0008
GraphGPS+Transformer (24) 0.6575±0.0049 0.2510±0.0015 0.3689±0.0131 0.3774±0.0150

GCN (30) 0.6860±0.0050 0.2460±0.0007 0.2078±0.0031 0.1338±0.0007
Gated-GCN (30) 0.6765±0.0047 0.2477±0.0009 0.3880±0.0040 0.2922±0.0018
GINE (30) 0.6621±0.0067 0.2473±0.0017 0.2718±0.0054 0.2125±0.0009
GraphGPS+Transformer (30) 0.6534±0.0091 0.2509±0.0014 0.4440±0.0054 0.3884±0.0055

Graph-Mamba (35) 0.6739±0.0087 0.2478±0.0016 0.4191±0.0126 0.3960±0.0175
Graph Mamba (1) 0.7071±0.0083 0.2473±0.0025 0.4393±0.0112 0.3974±0.0101

Chimera (Ours) 0.7021±0.003 0.2460±0.0002 0.496±0.007 0.3977±0.016

Table 5: Ablation: Chimera with approximate resolvent is competitive with the Transformer baseline.

Method Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)

GraphGPS+Transformer 0.6534±0.0091 0.2509±0.0014 0.4440±0.0054 0.3884±0.0055
Chimera (Ours) 0.7021±0.003 0.2460±0.0002 0.496±0.007 0.3977±0.016
Chimera (Approx) 0.6709±0.0089 0.2521±0.0006 0.4508±0.0367 0.3709±0.0009

6 CONCLUSION AND FUTURE WORK

In this work, we propose Chimera, a unified framework that mathematically generalizes State Space
Models (SSMs) to incorporate the underlying data topology. Unlike previous approaches that rely
on carefully engineered heuristics and treat attention and SSMs as black boxes, our method breaks
open this black box by providing a principled, domain-agnostic framework for modeling diverse data
modalities. We show that Chimera achieves state-of-the-art performance across domains including
language, vision, and graph tasks, consistently surpassing highly tuned domain-specific baselines,
which validates our premise and the proposed solution. Furthermore, we also show that for structured
domains like sequences and images, Chimera has an efficient linear complexity by leveraging our DAG
decomposition technique, recovering the complexity of SSMs like Mamba-2.

Our work is the first step toward developing unified models for diverse data modalities. We believe
that extending the DAG decomposition technique to general graphs to achieve linear complexity is an
exciting direction for future work. Furthermore, we hope that the research community applies Chimera
to more domains with an inherent underlying topology, and establishes Chimera as a strong baseline
for further research in those domains.
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A DEFERRED PROOFS

A.1 PROOF OF PROPOSITION 3.4

Proof. Let ϵi∼T (0,IT ) be T i.i.d. random Gaussian vectors. Assuming Gaussian initialization for
the adjacency matrix A, it can be expressed as:

A[i,:]=
γϵi

∥ϵi∥+exp(−Ψi)
. (21)

We first show that ∥A∥≤γ<1. From the concentration of the norm of a Gaussian random vector, with
high probability ∥ϵi∥≥

√
T for all tokens i. Since exp(−Ψi)≥0, ∥ϵi∥+exp(−Ψi)≥

√
T . Consider

any unit vector u, then

∥Au∥=
T∑

i=1

γϵTi u

∥ϵi∥+exp(−Ψi)
≤γ

T∑
i=1

ϵi√
T
≤γ

√
Tϵ√
T

=γϵ<1, (22)

with probability greater than 1−Φ(−1
γ ), were ϵi,ϵ∼N (0,1). Finally, since the operator norm of ∥A∥

is less than one, we apply Banach’s Lemma to get,

∥(I−A)−1∥≤ 1

1−∥A∥
, (23)

which implies that the inverse exists.

A.2 PROOF OF PROPOSITION 4.3

Proof.

Var(CT
i hi)=

1

|p(i)|

 ∑
j∈p(i)

AijVar(CT
i hj)+ln(Aij)Var(CT

i Bivi)

, (24)

=
1

|p(i)|

 ∑
j∈p(i)

AijVar(CT
j hj)+

2

d
ln(Aij)

, (25)

where we have used the fact that Var(CT
j hj)=Var(CT

i hj), and that the variance of X 2 distribution
with d degrees of freedom is 2d. Let d≥4, then

Var(CT
i hi)≤

1

|p(i)|

 ∑
j∈p(i)

Aij+
2

d
ln(Aij)

≤ 1

|p(i)|
∑

j∈p(i)

1≤1, (26)

where we have used the fact that Aij ∈ [0,1].

A.3 PROOF OF PROPOSITION 4.4

Proof. In the structured masked attention (SMA) framework Dao and Gu (2024b), the computational
complexity is the cost of the matrix-vector multiplication by the mask matrix L=(I−A)−1. In the
case of DAGs, A is (up to conjugation by a permutation) a lower-triangular matrix with |E| (number of
edges) non-zero entries. It suffices to analyze the cost of computing the multiplication y=(I−A)−1x.
Rewriting as (I−A)y=x, y can be computed through Gaussian elimination on the matrix I−A,
which takes time proportional to the number of non-zero entries or |V|+|E|.
In graph terminology, this operation can be viewed as a dynamic programming algorithm to propagate
features through the SSM update, where the ordering of edges to perform the update rule is given by
the Gaussian elimination ordering.
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B ADDITONAL EXPERIMENTS

B.1 MLM: CHIMERA ON UNDIRECTED LINE GRAPHS

For an undirected line graph (Figure 4, left), the adjacency matrix A takes the following form:

A=


0 a12 0 ··· 0
a21 0 a23 ··· 0
0 a32 0 ··· 0
...

...
...

. . .
...

0···0 0···0 0 aT−1,T 0

.
As discussed in Section 3.3, to ensure the existence of (I−A)−1, we introduced a row-wise sum
normalization strategy, wherein we normalized each row of the adjacency matrix with

∑
jAij+Ψi.

However, since this constraint is designed for general graphs, it is not sufficiently expressive. Therefore,
we instead use a strictyly more expressive constraint for line graphs which enforces Aij ·Aji+Ψi≤ 1

4
on each simple cycle of the graph.
Proposition B.1. Under the above constraint, the inverse (I−A)−1 exists as for any two nodes, the
sum of all paths between them is upper bounded by

∑
i(1/4)

i≤1/3.

B.2 IMAGENET: PARAMETER SHARING ABLATION

We study the trade-off between sharing parameters for B,C across different graphs as a domain-
dependent design choice. We explore four settings: No sharing, Complete sharing, Row-wise sharing,
and Diagonal sharing across the four DAGs. From Table 6, we observe that diagonal sharing achieves
the best performance, indicating it strikes the optimal tradeoff between parameter sharing and other
modes of increasing expressivity for modeling image data.

Method (22M) Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

None 77.10 76.13 93.55 93.15
Complete 77.25 76.09 93.75 93.21
Row-wise 77.46 76.57 93.76 93.37
Diagonal 77.80 76.69 93.87 93.53

Table 6: Ablation: Diagonal parameter sharing
works best.
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C ARCHITECTURAL DETAILS

Figure 7: Chimera’s Architecture: The output of the Chimera layer is embedded within the gated
block introduced in Mamba-2 (Dao and Gu, 2024a). Here X matrix denotes the input to the block,
and fc,fB ,f∆ and fV are data dependent projections defined in Section 2. The operator ⊙ denotes
element-wise multiplications between matrices, and ⊕ defines addition. The output from the Chimera
layer is passed through a Gated-MLP, a final projection fY , followed by a residual connection.

C.1 MASKED LANGUAGE MODELING

Table 7: Architectural and Training Details for BERT-B and Chimera on MLM

Parameter BERT-B (110M) Chimera (110M)

Model dimension (dmodel) 768 768
Layers 12 23
Max sequence length 128 128
Num Heads 12 12
Head size 64 64
Optimizer Decoupled AdamW Decoupled AdamW
Learning rate 5e−4 8e−4
Optimizer momentum β1=0.9,β2=0.98 β1=0.9,β2=0.98
Weight decay 1e−5 1e−5
Batch size 4096 4096
Learning rate schedule Linear decay with warmup Linear decay with warmup
Training steps 70k 70k
MLM Probability 0.3 0.3

In Table 7, we provide the architectural and training details for BERT-B and Chimera on the MLM task.
For both the models, we follow the M2 recipe from Fu et al. (2023), adjusting the number of layers to
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12 for BERT-B and 23 for Chimera to control for the number of parameters. We conducted a small
sweep to fine-tune the learning rate for Chimera, choosing 8e−4 over BERT-B’s 5e−4.

C.2 IMAGENET-1K CLASSIFICATION

For the image classification experiments, we largely follow the ViT-B recipe with the following
adjustments as shown in Table 8: To control for the number of parameters, we adjust the number of
layers from 12 for ViT-B to 22 for Chimera. Additionally, we reduce the Cutmix augmentation from
1.0 to 0.1, as Chimera’s stronger inductive bias mitigates the risk of overfitting.

In Table 9, we present the reduced setting used for our ablation studies in Tables 6 and 3, where we
match the number of parameters of ViT-S (22M).

Table 8: Hyperparameters used for ViT-B and Chimera for ImageNet-1k classification task

Parameter ViT-B (88M) Chimera (88M)
Image size 2242 2242

Optimizer AdamW AdamW
Optimizer momentum β1,β2=0.9,0.999 β1,β2=0.9,0.999
Weight init trunc. normal (std=0.02) trunc. normal (std=0.02)
Learning rate 1e−3 1e−3
Weight decay 0.05 0.05
Batch size 1024 1024
Training epochs 310 310
Learning rate schedule cosine decay cosine decay
Warmup epochs 10 10
Warmup schedule linear linear
Patch Size 16 16
Layers 12 22
Num Heads 12 12
Droppath 0.3 0.3
Randaugment (9,0.5,layers=2) (9,0.5,layers=2)
Mixup 0.8 0.8
Cutmix 1.0 0.1
Random erasing 0.25 0.25
Label smoothing 0.1 0.25
Stochastic depth 0.1 0.25
Exp. mov. avg (EMA) 0.99996 0.99996

Table 9: Key differences between the original and the ablation setting for Chimera

Parameter Chimera-S (2D)
Model dimension (dmodel) 384
Number of layers 22
Number of Heads 3
Droppath 0.1

C.3 LONG RANGE GRAPH BENCHMARK

To train Chimera on the Long Range Graph Benchmark we follow a similar training recipe to that
provided in Rampášek et al. (2022) where we replace the Transformer layers with Chimera layers.
Moreover, in line with the baselines, we make sure that our models have less than 500k parameters.
While training Chimera on graphs we remove the Gated-MLP layer Z defined in Figure 7. We did
this to keep our training recipe as close to that provided in Rampášek et al. (2022) and highlight the
effectiveness of Chimera. The hyperparameters used to train Chimera are provided in Table 10.
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Table 10: Hyperparameters running Chimera on the Long Range Graph Benchmark

Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP
Learning Rate 0.001 0.001 0.001 0.001
Optimizer Adam Adam Adam Adam
dropout 0.1 0.1 0.1 0.1
#layers 2 2 4 4
hidden dim. 256 256 128 128
head depth 2 2 2 2
batch size 32 32 32 32
#epochs 250 250 200 200
norm BatchNorm BatchNorm BatchNorm BatchNorm
MPNN GCN GCN GCN GCN
#Param. 461k 447k 498k 498k
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